AI-Enabled Dental Imaging for Oral Disease Detection

  • Priyadarshini Natarajan Auckland University of Technology
Keywords: Dental Radiography, Dental Imaging, Machine Learning, Object Detection

Abstract

This study aims to enhance the accuracy and efficiency of dental diagnostics using deep learning models to automatically detect and classify oral disease and dental structures on panoramic radiographs. By employing a quantitative research methodology, the study evaluates key performance metrics. The model's ability to accurately detect dental anomalies, such as caries, periodontal conditions, restorations, and implants, shows significant promise for real-time clinical applications (Arsiwala-Scheppach et al., 2023). In parallel, the study explores the broader potential of AI in dental imaging, addressing current limitations such as the adaptability of models trained on narrow datasets. It emphasizes the importance of expanding datasets to capture a wider range of patient demographics and imaging modalities and highlights the need to validate AI models in real-world clinical settings (Putra et al., 2022). Together, this research underscores the transformative role of AI in modernizing dental diagnostics, moving from traditional methods to advanced AI-enhanced techniques (Patil et al., 2022).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Arsiwala-Scheppach, L. T., Chaurasia, A., Müller, A.,

Krois, J., & Schwendicke, F. (2023). Machine learning in dentistry: A scoping review. Journal of Clinical Medicine, 12(3), 1–23. https://doi.org/10.3390/jcm12030937

Carrillo-Perez, F., Pecho, O. E., Morales, J. C.,

Paravina, R. D., Della Bona, A., Ghinea, R., Pulgar, R., Pérez, M. del M., & Herrera, L. J. (2022). Applications of artificial intelligence in dentistry: A comprehensive review. Journal of Esthetic and Restorative Dentistry, 34(1), 259–280. https://doi.org/10.1111/jerd.12844

Patil, S., Albogami, S., Hosmani, J., Mujoo, S., Kamil,

M. A., Mansour, M. A., Abdul, H. N., Bhandi, S., & Ahmed, S. S. S. J. (2022). Artificial intelligence in the diagnosis of oral diseases: Applications and pitfalls. Diagnostics, 12(5), 1–14. https://doi.org/10.3390/diagnostics12051029

Putra, R. H., Doi, C., Yoda, N., Astuti, E. R., & Sasaki,

K. (2022). Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofacial Radiology, 51(1). https://doi.org/10.1259/DMFR.20210197

Rashidi Ranjbar, F., & Zamanifar, A. (2024).

Autonomous dental treatment planning on panoramic x-ray using deep learning based object detection algorithm. Multimedia Tools and Applications, 83(14), 42999–43033. https://doi.org/10.1007/s11042-023-17048-4

Welikala, R. A., Remagnino, P., Lim, J. H., Chan, C. S., Rajendran, S., Kallarakkal, T. G., Zain, R. B., Jayasinghe, R. D., Rimal, J., Kerr, A. R., Amtha, R., Patil, K., Tilakaratne, W. M., Gibson, J., Cheong, S. C., & Barman, S. A. (2020). Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. IEEE Access,8,132677–132693. https://doi.org/10.1109/ACCESS.2020.3010180

Published
2025-01-07
How to Cite
Natarajan, P. (2025). AI-Enabled Dental Imaging for Oral Disease Detection. Rangahau Aranga: AUT Graduate Review, 3(1). https://doi.org/10.24135/rangahau-aranga.v3i2.237
Section
Research Methodologies Issue