ABSTRACT

Simulated satiation: A scale measure of satiation in reality-enhancing technologies

Erol Pala

Keywords: Reality-enhancing technology, Satiation, Simulated Satiation, Virtual Reality, Vicarious Experience

Satiation occurs when consumers no longer enjoy an experience, and it can be experienced physiologically as a bodily response, as well as in cognition and affect (Redden, 2015; Galak & Redden, 2018). Satiation prominently influences consumers’ behaviours, reducing consumption desires and increasing product/service replacement and disposal. This creates a critical challenge for marketers. Research pertaining to how satiation occurs and influences the customer journey and consumer decision making process within the context of virtual reality technology is embryonic and requires investigation. The purpose of this research is to examine the impact of satiation on consumer decision making on primarily virtual reality, but also augmented and mixed reality applications (VR, AR, and MR). Various factors in VR and AR platforms can influence consumers’ decisions and perceptions, such as latency-rendering issues that delay feedback, discrepancy, and simply knowing that the experience is just a simulation. Such factors cannot be experienced in real-life settings; therefore, this study will explore satiation via reality-enhancing technology perspective and aims to create a “simulated satiation” scale. I define simulated satiation as any attenuation in perceived benefits that occurs within or results from vicarious and simulated intermediary sources. To create a “simulated satiation” scale, this research will employ four phases: item generation and content validity, scale purification and confirming the scale structure, testing convergent and divergent validities of the scale, and designing a predictive validity study to show how the scale can aid research. Following this, in this presentation, I will illustrate how to create the “simulated satiation” scale and its potential impact on the marketing world.

References