Evaluation of osteoarthritic features in peripheral joints by ultrasound imaging: a systematic review

Prue Molyneux 1,2, Catherine Bowen 3,4, Richard Ellis 1,2, Keith Rome 1, Mike Frecklington 1,4, Matthew Carroll 1,2

1 School of Clinical Sciences, Auckland University of Technology, NZ. 2 Active Living and Rehabilitation, Aotearoa New Zealand, Health and Rehabilitation Research Institute, School of Clinical Sciences, Auckland University of Technology, NZ.
3 School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, UK. 4 Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, University of Southampton, Southampton, UK.

BACKGROUND
- Osteoarthritis (OA) is a global health burden and leading cause of chronic pain, joint stiffness, functional limitation, and disability among older adults.
- Our knowledge of foot and hand OA substantially lags behind that of other joint sites, such as the knee and hip.
- Ultrasound (US) imaging presents an alternative to plain radiography in the diagnosis of OA due to its ability to detect features present during disease progression, related both to inflammation and structural damage.
- US has been shown to have high sensitivity to detect subclinical inflammatory joint pathology and provides excellent resolution of superficial tissues/structures.
- Given the ability of US to depict tissue-specific morphological changes before the onset of pain and before the point of irreversible structural damage, US imaging may play a fundamental role in the earlier detection and assessment of peripheral joint OA.

AIM
The aim of the systematic review was to determine how structural and inflammatory osteoarthritic features in peripheral joints are:
1. Assessed,
2. Defined and

METHODS
- This systematic review is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
- An electronic literature search was performed on Medline, CINAHL, SportDiscus and The Cochrane Library.
- Methodological quality of studies was assessed using the Critical Appraisal Skills Program (CASP) tool.
- The following US measurement techniques were extracted: what OA features were imaged, how the US features were graded, if an US atlas was used, the sonographer(s) involved in the assessment, and all reliability data that were recorded.

RESULTS
- US features associated with OA:
 - Inflammatory US features: synovitis, synovial hypertrophy, joint effusion, tenosynovitis, and PD signal
 - Structural OA features: osteophytes, joint erosions, cartilage breakdown, and joint space narrowing.
- Defining US features:
 - No consistent use of US definitions used to define each US feature associated with OA.
 - Common inconsistencies were evident between individual studies interpretation of the different entities of synovial pathology.
- Grading US features:
 - There was no consistent way in which each US feature was graded to classify the degree of pathological change in joint tissue.
 - The grading systems applied were either dichotomous, semiquantitative, or continuous.
- Use of US atlas:
 - Six studies applied an US atlas.
 - An US atlas was only used to evaluate synovitis, PD activity, cartilage damage and osteophytes.
 - Three studies applied an US atlas that was originally developed to assess synovitis in RA.
 - No foot study has used an US atlas to assist grading.

DISCUSSION & CONCLUSIONS
- Past research has demonstrated an association between active synovitis and structural OA progression. This association indicates that US could identify those patients, or those joints at greatest risk for progression and provide capacity for earlier detection and assessment of OA-related change in peripheral joints.
- The synovial inflammation exhibited in early OA suggests a window of opportunity may exist for interventions targeting the inflammatory processes, thus providing the ability to intervene before irreversible structural damage occurs.
- Future studies will be improved by including more ethnic and age diverse populations, and assessment of changes in asymptomatic healthy controls as well as those who are asymptomatic or have radiographic change.
- Future studies should include 3D US to provide further diagnostic information and allow quantification of osteoarthritic change.
- This review strengthens the case for further refinement and validation of OA definitions, grading systems and US atlases specific to peripheral joints.
- Standardisation is also required regarding imaging acquisition protocols, definitions, grading systems, and US atlases.
- More foot specific US research is required to understand the progression of foot OA.