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Abstract 

  
High immunization rates are often sought to contain epidemics with target 
values typically 70% or greater. Our objective is to independently assess this 

value in the context of the 2020 Covid-19 pandemic in French Polynesia. To 
this extent, we develop a graph-based epidemic model tailored to this 
pandemic and compute the vaccination threshold required to prevent 

exponential spread of the communicable disease. Our results indicate that 
herd immunity increases drastically when a threshold percentage of 

vaccinated individuals is reached. Experimental data using our idealized 
model indicates that the threshold value is approximately 45%. We conclude 
that vaccination is much more effective at preventing pandemics than usually 

predicted. 
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1 Introduction 
  

It is well-known that highly communicable diseases such as measles can only 
be thwarted when a very large proportion of the population is immune, and 
vaccination is an effective way to artificially boost public immunity. In this 

paper, we seek to compute the herd immunity threshold (HIT), that is, the 
proportion of individuals who must be immune to ensure that reintroducing 

the disease in an otherwise healthy population only leads to contained, non-
exponential spread. 
 

This threshold is often confused with the final cumulative incidence rate (FCIR) 
which is the eventual proportion of recovered individuals in a naturally 

spreading pandemic. For simple compartmental models such as SIR, those 
values are in fact equal, and we have  

HIT = FCIR = 1 – 1/R0 

where R0 denotes the basic reproductive number of the disease. For Covid-19, 
current estimates (Kucharski et al., 2020; Billah & Nuruzzaman, 2020) give 

R0 ∈ [2.4, 3.4]. Considering a worst-case scenario of R0 ≈ 3.4, government 
officials thus seek an immunization rate of 1 – 1/3.4 ≈ 70% to contain further 
epidemics. 

  
Over the past year it has been widely argued that the herd immunity threshold 

for Covid-19 ought in fact to be significantly smaller (Gomes et al., 2021; 
Britton et al., 2020). We investigate this claim by developing a graph-based 
epidemic model. Such models provide finer-grained methods for simulating 

the spread of a communicable disease through a population with a 
heterogeneous social graph. We calibrate our model on public data specific to 
the 2020 Covid-19 pandemic in French Polynesia.  

 
We then use this model to compute the effectiveness of vaccination as 

measured by the resulting FCIR when reintroducing the disease in a partly 
immune population. Our computations show that vaccination sharply 
increases in effectiveness when a threshold proportion of about 45% immune 

individuals is reached. While considerations not taken into account by our 
idealized model (such as variants or antibody decay) surely affect this 

threshold value, we argue that the overall effect stands. 
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2 Methodology 
 

2.1 The SIR model 
 
The SIR model (Kermack & McKendrick, 1927) aims to predict the spread of 

an infectious disease; to this extent, it partitions the population in 
compartments: susceptible individuals (S), infectious individuals (I), recovered 
individuals (R). Flow patterns between compartments are generally described 
by ordinary differential equations such as: 

∂S/∂t = βIS/N,        ∂I/∂t = βIS/N-γI,        ∂R/∂t = γI, 

where N is the total population, β is the probability of contagion per individual 

per unit of time, and γ is the inverse of the duration of contagion. 
  

This model and its many variants implicitly assume perfect and uniform 
interaction between the populations of each compartment, as if each 
individual was in contact with every other in a homogeneous way. This is 

equivalent to assuming the social graph to be complete. This profound 
assumption on spreading patterns makes such models very simple and thus 

easy to work with but exhibits suboptimal correlation with observed data. 
 
2.2 Graph-based models 

  
To simulate the spread of an epidemic while taking into account the complexity 

of social interactions, we rely on graph-based models, also known as network-
based models. 
  

A graph consists of a set of vertices V and a set of edges E⊂V2. In the social 
graph, vertices represent individuals and edges correspond to significant 
social interactions. In this context we restrict the study to graphs which are 

non-directed, simple, and connected. Since the social graph cannot be 
rigorously defined or even computed, we use randomly generated graphs with 
specific properties: vertices are laid out on a two-dimensional lattice; for each 

vertex, a degree is chosen randomly according to a Poisson distribution as 
many vertices are then randomly chosen from neighboring lattice points and 
connected to it. 

  
Figure 1 shows the first four steps of a simulation of an epidemic along the 

edges of a social graph. Our model computes such simulations by tracking the 
state of each vertex: susceptible, incubating, contagious or recovered. Initially, 
the entire population is assumed susceptible, and we randomly select a given 

number to be incubating. After a period of incubation, they become contagious 
and are then able to pass on the disease to their neighbors in the social graph. 

Those vertices eventually become recovered and thus immune. 
 
 

 



 

 

4 

 

Pacific Health vol 5 2022 doi 10.24135/pacifichealth.v5i.59 

 

 

 

 
 

Figure 1: Simulating the propagation of the disease along the social graph. 
 

 We refer the reader to (Kiss et al., 2017) for an overview of graph-based 
models and we note that such models have already produced important 
results concerning the Covid-19 pandemic for specific geographical areas 

(Pizzuti et al., 2020; Chang et al., 2021). 
 

2.3 Calibrating social-graph parameters 
  
For our model, we selected graphs generated as described above to best 

approximate the social graph of French Polynesia. The latest count reports 
275,916 inhabitants and we thus generate graphs containing a total of 
250,000 vertices each. The degree of vertices is randomly distributed in [4,∞) 

according to a Poisson distribution with mean-value 12. This allows us to 
model a wide range of individuals with both small and large social circles 

(Meyerowitz et al., 2021) as well as to account for virus-specific phenomenon 
such as overdispersion (Endo et al., 2020). 
  

We further ensure that our graphs are connected with a diameter of about 30 
which is significantly higher than the degree of separation but more realistic 

given that Covid-19 mainly spreads through close relationships. 
 
2.4 Calibrating disease-related parameters 

  
Our model relies on state-of-the-art range estimates for the Covid-19 
incubation period (Lauer et al., 2020) and contagion period (He et al., 2020). 

Since there is no public data on the basic reproductive number R0 in French 
Polynesia, we conservatively use the upper bound 3.4 of the worldwide 

estimated range. Our algorithm's parameters are further chosen such that this 
value matches the initial observed spike of R0 where the epidemic grows 
exponentially. 

  
However we note that the actual value of R0 should be slightly smaller in 

French Polynesia due to multiple factors pertaining to tropical climate (Raines 
et al., 2021; Prather et al., 2020) including: higher humidity and thus less 
communicability via droplets (Božič & Kanduč, 2021); and higher 

temperatures and thus a lower frequency of indoor social activities (Bulfone et 
al., 2021). 
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3 Results 
 

3.1 Sample runs 
  
The procedures described above have been implemented in Python; the code 

is freely available online at:https://gaati.org/oyono/pandemic-code/ 
 

 
 
 

 
 

Figure 2: Sample run of our graph-based model. 

 
  
Using that code, we compute ten thousand sample runs of our model on a 

healthy population and verify that the output matches the expected values. 
See Figure 2 for one such run which is typical of what would be expected of a 

naturally evolving pandemic without any protective measures such as 
lockdowns or vaccination. 
 

3.2 Simulating the impact of vaccination on FCIR 
  

We now consider a healthy population of which a given percentage has been 
vaccinated and thus considered immune. The disease is then introduced, and 
we compute the final cumulative incidence rate (FCIR) of the epidemic. To 

determine the herd immunity threshold (HIT), that is, the threshold 
vaccination rate which prevents the reintroduced disease from spreading 
exponentially, we compute, for each percentage of vaccinated individuals in 

0.1% increments, a thousand sample runs of our model over randomly chosen 
graphs. Figure 3 shows our results. 

 
 
 

https://gaati.org/oyono/pandemic-code/
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Figure 3: FCIR for an epidemic in a partly vaccinated population. 
 

 
For each vaccination rate in 0.1% increment, FCIR has been computed for a 
thousand randomly chosen graphs; the black line shows the median value, 

and darker to lighter gray areas display probability ranges [25%,75%], 
[10%,90%], and [5%,95%]. 
 

3.3 Discussion 
  

For sample runs of our model simulating a naturally evolving pandemic on a 
healthy population, the resulting FCIR lies in the range [75%; 85%] which is 
widely accepted for Covid-19 (Wangping et al., 2020; He et al., 2020). This 

confirms the relevance of our model. 
  

We now turn to the simulation of an epidemic in a population of which a given 
percentage has been vaccinated and thus considered immune. Our 
computation of FCIR as a function of the vaccination rate is displayed in Figure 

3. It reveals a sharp increase in vaccination effectiveness around a threshold 
rate of about 40%. For vaccination rates below this threshold, the level of 
protection as measured by FCIR varies roughly linearly with the vaccination 

rate, as predicted by homogeneous models such as SIR. For vaccination rates 
above this threshold, the level of protection quickly reaches its maximum: 

exponential spread of the disease is not observed at vaccination rates of 45% 
and above. 
We stress actual threshold values may differ since our model reflects an 

idealized version of the 2020 Covid-19 pandemic and, as such, does not 
account for several factors including multiple circulating variants of the virus 

(Fowlkes et al., 2021) and vaccine effectiveness (Rosenberg et al., 2021). 
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Nevertheless, we argue that the general behavior stands, namely that 

vaccination sharply increases in effectiveness around a threshold value. Said 
HIT value is necessarily smaller than the FCIR for a naturally evolving 
pandemic. Further research remains necessary to confidently assess the HIT 

value. 
 

4 Conclusions 
  
We conclude that, as a public health strategy, vaccination is much more 

effective at preventing pandemics than predicted by homogeneous models. 
While its effectiveness initially grows linearly in the proportion of immune 

individuals, it sharply increases when a threshold immunity rate is reached. 
Although our model is unsuited to determine actual values, it indicates that, 
at least in the context of French Polynesia, the actual HIT is likely closer to 

50% than to 70%. 
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