On the existence of an optimal estimation window for risk measures
Abstract
We investigate whether there can exist an optimal estimation window for financial risk measures. Accordingly, we propose a procedure that achieves optimal estimation window by minimizing estimation bias. Using results from a Monte Carlo simulation for Value at Risk and Expected Shortfall in distinct scenarios, we conclude that the optimal length for the estimation window is not random but has very clear patterns. Our findings can contribute to the literature, as studies have typically neglected the estimation window choice or relied on arbitrary choices.Downloads
Copyright (c) 2016 Marcelo Brutti Righi, Paulo Sergio Ceretta
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors submitting articles for publication warrant that the work is not an infringement of any existing copyright and will indemnify the publisher against any breach of such warranty. By publishing in Applied Finance Letters, the author(s) retain copyright but agree to the dissemination of their work through Applied Finance Letters.
By publishing in Applied Finance Letters, the authors grant the Journal a Creative Commons nonexclusive worldwide license (CC-BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License) for electronic dissemination of the article via the Internet, and, a nonexclusive right to license others to reproduce, republish, transmit, and distribute the content of the journal. The authors grant the Journal the right to transfer content (without changing it), to any medium or format necessary for the purpose of preservation.
Authors agree that the Journal will not be liable for any damages, costs, or losses whatsoever arising in any circumstances from its services, including damages arising from the breakdown of technology and difficulties with access.