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Abstract 
In this paper we introduce the Arbitrary Rectangle-range Elastic Net (AREN): an elastic net with 
coefficients restricted to some rectangle in ℝ𝐩𝐩 , 𝐩𝐩 ≥ 𝟏𝟏 . The AREN method is one of many 
regularization techniques intended to increase prediction accuracy in linear regression models by 
shrinking the magnitude (and possibly eliminating some) of the regression coefficients in an effort 
to control over-fitting and under-fitting. In this work we describe the AREN features and discuss its 
statistical consistency properties in estimation and in selecting the correct set of predictors. We also 
introduce bootstrapping as a way to improve the “small-sample” performance of AREN in selecting 
predictors. We then apply the AREN (with and without bootstrapping) to tracking the value of the 
S&P 500 index using a reduced set of stocks. 
MSC2020 subject classifications: Primary 62P05, 62J07; secondary 62F12. 

Keywords: Arbitrary rectangle-range elastic net, variable selection, asymptotic consistency, 
bootstrap. 
 

 

1. Introduction  

Variable selection and regularization are essential tools in high-dimensional data analysis. They aim at 
deriving the most valuable information from the data by finding the right balance of bias (under-
fitting) and variance (over-fitting) to optimize the model’s prediction capability. Perhaps the earliest 
example of this type of regularization is the so-called “Ridge Regression” which enforces a penalty 
proportional to the squared l2 -norm of the regression coefficients in the least squares estimation 
problem. The “lasso” (Least Absolute Shrinkage and Selection Operator) (Tibshirani, 1996) replaces the 
squared l2 -norm penalty in Ridge Regression with an l1 -norm penalty, which adds the benefit of 
actually assigning 0 to certain regression coefficients. Due to its computational efficiency (Efron et al., 
2004), variable selection consistency (Zhao and Yu, 2006), and estimation consistency (Negahban et 
al., 2012), lasso has overtaken the popularity of Ridge Regression. Refer to (Bickel et al., 2009; Efron et 
al., 2007; Lounici, 2008; Wang et al., 2007; Yuan and Lin, 2006; Zhao et al., 2009; Zou, 2006) for more in-
depth discussions of lasso. Recently, the elastic net was introduced to extend the lasso (Zou and 
Hastie, 2005). This method involves linearly combining the lasso and ridge regression-like penalties. 

Recall that in the classical regression each regression coefficient can assume any value in the real 
numbers; they are not constrained in any way. However, there can be practical constraints on the 
regression coefficients; some may be bounded, some may be restricted to be positive or negative. 
For example, it is known that body height is positively correlated to age; allocations (as a fraction of 
the total) of assets in a fund should be in [0,1]. Based on the above concerns in practice, it is natural 
to consider regressions with coefficients restricted to some specific range. For instance, Wu et al. (2014) 
and Wu and Yang (2014) introduced the non-negative lasso and non-negative elastic net to solve the 
index tracking problem without short sales (with non-negative constraints on weights). More flexible 
methods are needed to address problems that require arbitrary constraints. To this end, in this paper 
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we examine a recently developed method that assumes the regression coefficients to be in some 
rectangular range. This model, the arbitrary rectangle-range elastic net method (abbreviated 
throughout AREN), is a regularization method that deals with high-dimensional problems, and most 
importantly, generalizes and outperforms the lasso, ridge, and non-negative elastic net. Compared 
with the non-negative elastic net, AREN allows adding arbitrary lower and upper constraints on the 
coefficients. This feature makes AREN more adaptable to practical problems. We summarize the 
contribution of our paper as follows: 

1. We introduce AREN to increase the adaptability of the elastic net method when dealing with 
regressions with constrained-range coefficients. 

2. Sufficient conditions for estimation consistency and variable selection consistency of the AREN 
are discussed. 

3. We apply AREN to the problem of tracking the S&P 500 index and following show that AREN 
(and likely other similar regularization approaches) can be improved through the use of 
bootstrapping. 

The paper is organized as follows. In Section 2, we introduce the mathematical model of AREN and 
survey its estimation consistency (Theorem 2.1) and variable selection consistency properties (Theorem 
2.4). Section 3 is devoted to an application of two-step AREN and bootstrapped two-step AREN to the 
practical problem of S&P 500 index-tracking. The interested reader may refer to Ding et al. (2021) for 
simulations that compare the performance of a variety of similar methods of this type. 

 
2. The AREN 

2.1 Definition and Basic Setup 
Throughout the paper, the transpose of a matrix A is denoted by A′. The i-th column of A is denoted by 
Ai, and the entry in the i-th row and j-th column of A is expressed as Aij. The notation max(v) (resp. 
min(v)) signifies the maximum (resp. minimum) element of the vector or the matrix v. When necessary 
to identify the elements of an n × n matrix X we write X = �Xij�1≤i,j≤n. The element-wise absolute value 

of the matrix X = �Xij�1≤i,j≤n  is |X| = ��Xij��1≤i,j≤n  with obvious modification if X  is a vector. From two 

vectors 𝐱𝐱 = �x1, … , xp�, 𝐲𝐲 = �y1, … , yp�, we define the corresponding rectangle in ℝp as the cartesian 
product [𝐱𝐱, 𝐲𝐲] = [x1, y1] × ⋯× �xp, yp�. 

Let us consider the linear regression model 

 
 Y = Xβ∗ + ϵ, (2.1) 

 

where X  is a deterministic n × p  design matrix, Y = (y1  … yn)′  is an n × 1  response vector and ϵ =
(ϵ1  … ϵn)′ is a zero-mean Gaussian noise vector with 𝕍𝕍ar(ϵ1) = σ2. Without loss of generality, we assume 
all the predictors are centered, so the intercept is not included. β∗ ∈ ℝp  denotes the vector of 
regression coefficients. 

When p is large, it is natural to assume that the linear model, Equation (2.1), is q-sparse; i.e., β∗ has at 
most q (q ≪ p) nonzero elements. For the AREN regularization, we assume there is a rectangular region 
ℐ = [𝐬𝐬, 𝐭𝐭] in ℝp  that contains β∗ , with 𝐬𝐬 = �s1, … , sp�, 𝐭𝐭 = �t1, … , tp�, si ∈ ℝ ∪ {−∞},  ti ∈ ℝ ∪ {+∞}, si < ti  for 
all i = 1, … , p. For the linear model Equation (2.1), the AREN estimator of β∗ is given by 
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 β� �λn
(1), λn

(2)� = arg min
β∈ℐ

�
1

2n ∥
∥Y − Xβ∥∥2

2 + λn
(1)‖β‖1 + λn

(2)‖β‖22�. (2.2) 

 

Here λn
(1), λn

(2) ≥ 0 are tuning parameters which control the importance of the l1 and l2 regularization 
terms, respectively. These are typically tuned to minimize the prediction mean-squared error by 
repeatedly performing AREN on training data for each pair in a lattice of values of λn

(1), λn
(2) ≥ 0, using 

the resulting model to predict the responses for an out-of-sample testing set and computing the 
observed mean-squared error in those predictions. A search over that lattice can then select the pair 
with the smallest mean-squared error.  

The AREN, Equation (2.2) method extends the elastic net method when ℐ = ℝp. It extends the non-
negative elastic net when ℐ = [0, +∞)p.  

Observe that, taking Ẋ = X/√2n and Ẏ = Y/√2n, the mean-squared error loss function in Equation (2.2) 
can be transformed to the residual sum of squares loss function, i.e., Equation (2.2) becomes 

 

 β� �λn
(1), λn

(2)� = arg min
β∈ℐ

��Ẏ − Ẋβ�2
2 + λn

(1)‖β‖1 + λn
(2)‖β‖22�, (2.3) 

 

which is a particular case of the Arbitrary Rectangle-range Generalized Elastic Net (ARGEN) studied 
in Ding et al. (2021). As a result, the AREN problem, Equation (2.2), can be solved numerically using the 
so-called “multiplicative updates for solving quadratic programming with rectangle-range l1 
regularization” algorithm. We refer the reader to Ding et al. (2021, Algorithm 1) for more detail on this 
algorithm. 

Also observe that the AREN problem can be transformed to a rectangle-range lasso problem. If we 
take 

X� =
1

�1 + λn
(2)
�

X

�λn
(2)1p×p

�
(n+p)×p

,     Y� = �Y
0�(n+p)×1

,     λn =
λn

(1)

�1 + λn
(2)

 , 

β�∗ = �1 + λn
(2)β∗,     ℐ̃ = ���1 + λn

(2)si,�1 + λn
(2)ti�

p

i=1

 , 

then the problem, Equation (2.2), is equivalent to 

 

 β��(λn) = arg min
β∈ℐ̃

�
1

2n�
Y� − X�β�2

2 + λn‖β‖1�, (2.4) 

 

where 1p×p  denotes the p × p identity matrix and β��(λn)  is the estimator of β�∗ . Both estimation and 
model consistencies of the lasso have been studied in the literature, and this work is easily adapted to 
apply to the estimation and model consistencies of the rectangle-range lasso, as well as the AREN. 
We therefore simply state these results for the AREN without proof in the next two sections. 
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2.2 Upper Bounds of Tail Probability and Estimation Consistency 
We say the AREN has estimation consistency if the AREN estimator β� satisfies 

�β� − β∗�
1
⟶
ℙ

n→∞
0    or    �β� − β∗�

2
⟶
ℙ

n→∞
0, 

where ⟶
ℙ

n→∞
 denotes the convergence in probability. As pointed out earlier, our AREN model is in fact 

equivalent to the rectangle-range lasso studied further in Ding et al. (2021, Corollary 2.5). The main 
difference between AREN and the model in Ding et al. (2021, Corollary 2.5) lies in whether there is the 
multiplier 1/(2n) in the loss function (see Equation (2.2)). This difference makes the conditions (ii) and 
(iii) below slightly different from those in Ding et al. (2021, Corollary 2.5). Nevertheless, those results 
prove the estimation consistency of the AREN, subject to the following conditions, adapted and 
modified from Ding et al. (2021): 

(i) 𝛃𝛃∗ ∈ 𝓘𝓘. 
(ii) The designed matrix 𝐗𝐗 satisfies 

Xj′Xj + λn
(2)

�1 + λn
(2)�n

≤ 1,  for all j = 1, … , p. 

(iii) There exists a constant 𝛋𝛋 > 𝟎𝟎, such that 
‖Xβ‖22 + λn

(2)‖β‖22

�1 + λn
(2)�n

≥ κ‖β‖22 

for all β ≥ 0 satisfying 

� �βj�
j∈{1,…,p}: βj

∗=0

≤ 3 � �βj�
j∈{1,…,p}: βj

∗≠0

. 

(iv) 𝛌𝛌𝐧𝐧
(𝟏𝟏) and 𝛌𝛌𝐧𝐧

(𝟐𝟐) satisfy 
λn

(1)

1 + λn
(2) ⟶

n→∞
0    and    exp�−

n
8σ2

(λn
(1))2

1 + λn
(2)� ⟶

n→∞
0, 

 

where σ > 0 is the residual standard deviation of each component of the error term in the linear 
model, Equation (2.1). 

The estimation consistency of the AREN is provided by this theorem: 

Theorem 2.1: Consider a q-sparse instance of the AREN, Equation (2.2). Let X satisfy the conditions (i) - 
(iii) and let the regularization parameters satisfy λn

(1) > 0, λn
(2) ≥ 0. Then the AREN solution β� = β��λn

(1), λn
(2)� 

satisfies: 

ℙ��β� − β∗�
2
2 >

9q�λn
(1)�

2

κ2�1 + λn
(2)�

2� ≤ 2p exp�−
n�λn

(1)�
2

8σ2�1 + λn
(2)�

�, 

 
 

ℙ��β� − β∗�
1

>
12qλn

(1)

κ�1 + λn
(2)�

� ≤ 2p exp�−
n�λn

(1)�
2

8σ2�1 + λn
(2)�

� . 

 
In addition, if (iv)  holds, the AREN, Equation (2.2), has the property of estimation consistency: 
�β� − β∗�

2
⟶
ℙ

n→∞
0. 
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Theorem 2.1 provides fine upper bounds of the tail probabilities of the estimation errors in l1 and l2-
norms. It then makes clear that the estimation consistency holds whenever λn goes to zero slower than 
n−1/2. If we take ℐ = [0, +∞)p, λn

(2) = 0 and λn
(1) = 4σ�log(p)/n in Theorem 2.1, the tail probability bounds 

for the non-negative lasso follow as in Wu et al. (2014, Proposition 1). If we further assume ℐ = ℝp in 
Theorem 2.1, the tail bounds for the unconstrained lasso follow (Negahban et al., 2012, Corollary 2). In 
the above two cases, if we assume p = pn, q = qn with pn ⟶ +∞ and pnlog(qn)/n ⟶ 0, as n → ∞, the 
estimation consistency holds. However, if λn = λ0n−1/2  for some λ0 > 0 , whether the estimation 
consistency holds is an open problem. In this situation what can be derived is the sign pattern 
consistency: there is positive probability that all signs of β�  are consistent with those of β∗ , i.e., 
Propositions 1 and 2 in Bach (2008) can be obtained for AREN. Such sign pattern consistency can be 
viewed as a weak form of variable selection model consistency. When λn goes to infinity, it is possible 
to establish the strong version of variable selection consistency for AREN. In the next section we present 
the variable selection consistency of AREN subject to the assumption that λn

(1) goes to infinity faster 
than √n and some other conditions. 

 

2.3 Variable Selection Consistency 
Recall that our AREN problem is equivalent to the problem, Equation (2.3), whose variable selection 
consistency can be derived as a special case of the generalized version in Ding et al. (2021, Theorem 
2.3). In the interests of completeness, we state the variable selection consistency conditions for our 
AREN, which have been modified and adapted from those in Ding et al. (2021, Theorem 2.3). Denote 
by 

G = {i ∈ {1, … , p}:  βi∗ = 0} and G� = {i ∈ {1, … , p}:  β�i = 0}, 

 

and let #G be the cardinality of the group of indexes G. The variable selection consistency for the AREN 
is defined as follows. 

Definition 2.2: We say that the AREN, Equation (2.2), satisfies variable selection consistency if there exist 
λn

(1) and λn
(2) such that ℙ(G� = G) ⟶

n→∞
1. 

The above variable selection consistency is a stronger property than the sign pattern consistency 
discussed in Bach (2008). It says that, if βi∗ = 0, then with probability approaching 1, the i-th predictor 
will not be selected, as n becomes large. Note that the variable selection consistency of the non-
negative elastic net and elastic net (Wu and Yang, 2014; Wu et al, 2014; Zhao and Yu, 2006) are 
implied by variable consistency of the AREN. 

Let X(1) = (Xi)i∉G  be the observed predictor values corresponding to the group of indexes Gc , the 
complementary of G. Let β(1)

∗ = (βi∗)i∉G , s(1) = (si)i∉G  and t(1) = (ti)i∉G . Similarly let X(2) = (Xi)i∈G , β(2)
∗ =

(βi∗)i∈G, s(2) = (si)i∈G and t(2) = (ti)i∈G. Moreover, denote by 
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 Cij =
X′(i)X(j)

2n2
,  for i,  j = 1,2;

ρn
(1) = max ��C11 +

λn
(2)

n
1(p−#G)×(p−#G)�

−1

C11β(1)
∗ − t(1)� ;

ρn
(2) = min��C11 +

λn
(2)

n
1(p−#G)×(p−#G)�

−1

C11β(1)
∗ − s(1)� ;

Cn = �C11 +
λn

(2)

n
1(p−#G)×(p−#G)�

−1

�
λn

(1)

2
sign�β(1)

∗ �� ;

Cnmax = maxCn,    Cnmin = minCn,

 

 

(2.5) 

where for a vector v = (v1, … , vn), sign(v) = �sign(v1) …  sign(vn)�′ denotes the vector of signs of the 
elements in v. The sign equals 1 for positive entry, −1 for negative entry and 0 for zero entry. To show 
the AREN, Equation (2.2), admits the variable selection consistency, we assume that the following 
conditions hold: 

 
q > 1,  p − q > 1, 

λn
(1)

√n
⟶
n→∞

+ ∞,  
max
1≤i≤p

Xi′Xi

n2
⟶
n→∞

0, (2.6) 

and 
  

1

ρn
(1)

⎝

⎛
8σ�#G(1)trace(C11)log�#G(1)�

nΛmin�C11 + λn
(2)1(p−#G)×(p−#G)/n�

+
�Cnmin�

n
⎠

⎞ ⟶
n→∞

0, 
(2.7) 

  
 

1

ρn
(2)

⎝

⎛
8σ�#G(1)trace(C11)log�#G(1)�

nΛmin�C11 + λn
(2)1(p−#G)×(p−#G)/n�

+
|Cnmax|

n
⎠

⎞ ⟶
n→∞

0, 
(2.8) 

 

where trace(C11) denotes the trace of the matrix C11 and Λmin(M) denotes the minimal eigenvalue of 
the matrix M . In addition, we assume that the arbitrary rectangle-range elastic irrepresentable 
condition (AREIC), defined below, is satisfied. 

Definition 2.3:  If there exists a positive constant vector η, such that 

 

C21 �C11 +
λn

(2)

n
1(p−#G)×(p−#G)�

−1

�sign�β(1)
∗ � +

2λn
(2)

λn
(1) β(1)

∗ � −
2λn

(2)

λn
(1) s(2) ≤ 𝟏𝟏 − η, 

 

where 𝟏𝟏 = (1 … 1)′, we say that AREIC holds. 

When ℐ = [0, +∞)p, the AREIC becomes the non-negative elastic irrepresentable condition (NEIC) as 
follows: 
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C21 �C11 +

λn
(2)

n
1(p−#G)×(p−#G)�

−1

�𝟏𝟏 +
2λn

(2)

λn
(1) β(1)

∗ � ≤ 𝟏𝟏 − η. (2.9) 

 

The NEIC was crucial to get the variable selection consistency of the non-negative elastic net (Zhao 
et al., 2014). If further λn

(2) = 0  in Equation (2.9), the NEIC then becomes the non-negative 
irrepresentable condition (NIC): C21C11−1𝟏𝟏 ≤ 𝟏𝟏 − η, which was needed to obtain the variable selection 
consistency of the non-negative lasso in Wu et al. (2014). Note that, NIC is a non-negative version of 
the following irrepresentable condition (IC): �C21C11−1sign�β(1)

∗ �� ≤ 𝟏𝟏 − η , for the variable selection 
consistency of the lasso (Zhao and Yu, 2006). It was proved in Zhao and Yu (2006) that IC is a sufficient 
and necessary condition for the variable selection consistency of the lasso, while NIC is only a sufficient 
condition. However, since NIC is less restrictive than IC (it does not depend on the unknown 
parameters β∗), so easier verified than IC in practice. Nevertheless, AREIC is a natural extension of the 
previous conditions NEIC and NIC for the variable selection consistency. We state below the variable 
selection consistency theorem for the AREN. 

Theorem 2.4: Assume that the conditions, Equations (2.6) - (2.8), and the AREIC hold. Then the AREN, 
Equation (2.2), possesses the variable selection consistency property given in Definition 2.2. 

Estimation consistency and variable selection consistency are important statistical properties because 
they guarantee that as the sample size n increases (which is tantamount to a proportional increase in 
information), so does the accuracy of estimation and variable selection. Although the somewhat 
esoteric sufficient conditions outlined in this section are difficult to verify in practice, it is almost certain 
that less restrictive, more general conditions for these types of consistency hold and apply broadly. 
Still, this is no guaranty of accuracy in any specific moderate or large sample. Accordingly, it is possible 
that AREN could under-perform in practice if conditions are sufficiently extreme. To help mitigate this, 
we introduce BoAREN, or “Bootstrapped AREN”, following Bach (2008). As long as n is not critically 
small, the estimation consistency and variable selection consistency would guarantee a high 
likelihood that most of the variables are correctly chosen and estimated accurately. By performing 
bootstrap replications of the data, each bootstrap replicate should also produce a result with most of 
the variables correctly chosen and estimated accurately. By definition of bootstrap replication, each 
bootstrap replicate of fitting the AREN is likely to be slightly different (i.e. contain a slightly different set 
of variables selected). By estimation consistency, each of these sets should be “close” to the correct 
set, though some may be lacking some important variables, while others may contain slightly too 
many. Intersecting (or alternatively, “soft” intersecting - see the next section) these sets can therefore 
improve the accuracy of variable selection. The two models, AREN and BoAREN, are applied to the 
index tracking problem in the next section. 

 

3. BoAREN and S&P 𝟓𝟓𝟎𝟎𝟎𝟎 Index Tracking1 

An index fund is a passively managed mutual fund that is designed to track a given component of 
the market, for example, the S&P 500. Index tracking is a generic term for the various 
methods/algorithms used by portfolio managers to guarantee that the index fund remains in close 
agreement with the target market component. Here, the main objective for the index tracking 
problem is minimizing the tracking error, which we define as the standard deviation of the difference 

 

1 Code for the AREN/BoAREN computations in this section can be found in https://github.com/yujiading/bootstrapped-aren. 

https://github.com/yujiading/bootstrapped-aren
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between the returns of the selected portfolio (RP) and the benchmark (RB). Assuming the total number 
of periods is n, the tracking error (TE) per perod is computed by 

 

 
TE = �

1
n
�(
n

i=1

�Ri
P − Ri

B� −
1
n
��Rl

P − Rl
B�

n

l=1

)2. 

 
(3.1) 

 
 
 
 

 Algorithm 1: BoAREN2 
 Input:   X ∈ ℝn×p 

Y ∈ ℝn  
Number of bootstrap replicates m 
Soft index S 
l1 regularization parameter λn

(1) 
l2 regularization parameter λn

(2) 
AREN coefficient lower constraints 𝐬𝐬 ∈ (ℝ ∪ {−∞})p 
AREN coefficient upper constraints 𝐭𝐭 ∈ (ℝ ∪ {+∞})p 

1 
2 
3 
4 
5 
6 

For i ← 1 to m do 
Generate bootstrapped X(i) ∈ ℝn×p and Y(i) ∈ ℝn 
Compute AREN estimate β�(i) from X(i) and Y(i) with λn

(1), λn
(2), ℐ = [0,∞)p 

Compute support J(i) = {j,  β�j
(i) ≠ 0} 

Compute J = (⋂S)i=1m J(i) 
Compute AREN estimate β�J from XJ and Y with λn

(1) = λn
(2) = 0, ℐ = [𝐬𝐬, 𝐭𝐭] 

 
 Algorithm 2: Two-step AREN 
 Input:   X ∈ ℝn×p 

Y ∈ ℝn  
l1 regularization parameter λn

(1) 
l2 regularization parameter λn

(2) 
AREN coefficient lower constraints 𝐬𝐬 ∈ (ℝ ∪ {−∞})p 
AREN coefficient upper constraints 𝐭𝐭 ∈ (ℝ ∪ {+∞})p 

1 
2 
3 

Compute AREN estimate β� from X and Y with λn
(1),  λn

(2), ℐ = [0,∞)p 
Compute support J = {j,  β�j ≠ 0} 
Compute AREN estimate β�J from XJ and Y with λn

(1) = λn
(2) = 0, ℐ = [𝐬𝐬, 𝐭𝐭] 

 

We apply the two-step AREN (Algorithm 2) and BoAREN (Algorithm 1) to creating an index fund to 
track the performance of S&P 500 index. The main idea is to follow a two-step method that applies a 
(bootstrapped) non-negative elastic net to select a subset of stocks, then apply constrained least 
squares on the selected stocks to estimate the unknown coefficients. In this section the two-step 
BoAREN is simply called BoAREN. The index tracking procedure is summarized in Algorithm 3. Wu and 
Yang (2014) find that the index tracking results can be greatly improved through this two-step method. 
For bootstrap approach, it has been observed in Bach (2008) that intersecting the supports for each 

 

2 “BoAREN” refers to the AREN algorithm enhanced by bootstrapping. 
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bootstrap replication might be too strict and a so-called “soft” version improves the performance. We 
include a soft index S (e.g. 90%, 80%, 70%) in the BoAREN algorithm so that ⋂S (Algorithm 1, Line 5) 
selects the supports which are present in at least the percentage S of the bootstrap replications. The 
non-negative setting, i.e. ℐ = [0,∞)p in Line 3 of Algorithm 1 and Line 1 of Algorithm 2, ensures that we 
focus on “long-only” strategies. 

 Algorithm 3: Index Tracking using Two-step AREN or BoAREN 
 Input:   X ∈ ℝn×p 

Y ∈ ℝn  
Number of bootstrap replicates m, if using BoAREN 
Soft index S, if using BoAREN 
λn

(1) tuning grid Λ(1) 
λn

(2) tuning grid Λ(2) 
AREN coefficient lower constraints 𝐬𝐬 ∈ (ℝ ∪ {−∞})p 
AREN coefficient upper constraints 𝐭𝐭 ∈ (ℝ ∪ {+∞})p 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Xtrain, Ytrain, Xval, Yval, Xtest, Ytest ← X, Y  
For each λn

(1) ∈ Λ(1) and λn
(2) ∈ Λ(2) do 

If using BoAREN 
Compute β�J from Xtrain,  Ytrain,  m, S,  λn

(1),  λn
(2),  𝐬𝐬,  𝐭𝐭, using Algorithm 1 

Else if using two-step AREN 
Compute β�J from Xtrain,  Ytrain,  λn

(1),  λn
(2),  𝐬𝐬,  𝐭𝐭, using Algorithm 2 

RB ← Yval  
RP ← Xvalβ�J  
Compute tracking error from RB,  RP, using Equation (3.1) 

Find the corresponding β�J with the smallest tracking error  
RB ← Ytest  
RP ← Xtestβ�J  
Compute tracking error from RB, RP, using Equation (3.1) 

We use one year (from 2020-9-1 to 2021-9-1) of daily adjusted closing prices (253 observations) of the 
S&P 500 and 3023  S&P 500 component stocks. In Algorithm 3, the input Y  represents the daily 
percentage return of S&P 500, each column of the input X represents the daily percentage return of 
one of the 302 stocks. The total number of columns of X is p = 302. We use the first 70% of the 252 data 
points for training, the next 20% for validation, and the last 10% for testing. We use the mean value of 
the training set to center the whole data set so that the regression can be fit without intercept (Hastie 
et al., 2009, p. 64). To simplify the tuning process, we use the strategy in Friedman et al. (2010, Section 
2.5) to rewrite the regularization as λ(α‖β‖1 + 0.5(1 − α)‖β‖22), where all coefficients will shrink to zero if 
λ > λmax = 2maxl{XlY}/α . We use a grid of 10  equally spaced points on [0,1]  for α . We set λmin =
0.001λmax and use a grid of 100 equally spaced points on [λmin, λmax] for λ. 

The possibility of adding constraints to coefficients in AREN allows us to select the values of 𝐬𝐬 and 𝐭𝐭 in 
Algorithm 3 to avoid concentrated stock positions, that is to avoid over investing in any single stock 
which can expose the investor to significant risk based on the fortunes of a few companies. To 
elaborate, suppose we invest money in #J (cardinality of J) stocks with returns Rj

l = �Pjl − Pjl−1�/Pjl−1, j =

1, … , #J to track S&P 500 with return R�SP
l = �P�SP

l − PSP
l−1�/PSP

l−1 using l as indexes of date. Let RSP
Train

, Rj
Train

, j =
1, … , #J represent the mean returns on the training set for the S&P 500 and the selected stocks. The 
regression gives: 

 

3 We only consider the daily prices from 302 stocks that have not been changed during the period of interest. 
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R�SP
l − RSP

Train
= ��β�J�j

#J

j=1

(Rj
l − Rj

Train
); 

 

P�SP
l = �

�β�J�jPSP
l−1Pjl

Pjl−1

#J

j=1

+ �1 + RSP
Train

−�(
#J

j=1

1 + Rl
Train

)�β�J�j� PSP
l−1, 

which means to track PSP
l  dollar amount of S&P 500, we invest �β�J�jPSP

l−1Pjl/Pjl−1 dollar amount on stock j 
for j = 1, … , #J and hold or borrow 

�1 + RSP
Train

−�(
#J

j=1

1 + Rl
Train

)�β�J�j� PSP
l−1 

 

dollar amount. So, the percentage of money spent on each stock is 

�β�J�i

�β�J�i + Pi
l−1

Pi
l ∑

�β�J�jPj
l

Pj
l−1

#J
j=1,j≠i

=
�β�J�i

�β�J�i + ∑
�β�J�j�1+Rj

l�

1+Ri
l

#J
j=1,j≠i

 

 

for i = 1, … , #J. To avoid concentrated stock positions, we want each percentage less than an amount 
M (e.g. 10%, 20%, 30%), i.e., for i = 1, … , #J, 

 

�β�J�i

�β�J�i + ∑
�β�J�j�1+Rj

l�

1+Ri
l

#J
j=1,j≠i

≤
ti

ti + 1+Rmin

1+Rmax ∑ sj
#J
j=1,j≠i

≤ M ≤ 1, 

 

where Rmin and Rmax are the smallest and largest prices for all stocks, respectively. Assume si = s0, ti =
t0 for all i, we guarantee that the percentage of money spent on a single stock is less that M through 
selecting s0, t0 such that 

s0 ≤ t0 ≤
M

1 − M
1 + Rmin

1 + Rmax (#J − 1)s0. 

 

A variety of approaches could be used to tune s0, t0 to improve performance, but here we use the 
following simple steps to select s0, t0 . First, we find the maximum and minimum coefficients, 
�β�J�max, �β�J�min, when M = 100% (i.e., [𝐬𝐬, 𝐭𝐭] = [0,∞)p). Then given M, we set s0 = �β�J�min and calculate 
the biggest t0, and set t0 = �β�J�max and calculate the smallest s0. The final s0, t0 are taken to be the 
case that has the largest distance between them. Note that the scale needs to be 

 

M
1 − M

1 + Rmin

1 + Rmax (#J − 1) ≥ 1 ⇔ M ≥
1

1 + 1+Rmin

1+Rmax (#J − 1)
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to make this process work. Hence for this method there will be a bound below which M cannot be set, 
depending on the data. 

 

Table 1: Tracking errors (TE in units of 𝟏𝟏𝟎𝟎−𝟑𝟑 ) root mean-squared errors (RMSE in units of 𝟏𝟏𝟎𝟎−𝟑𝟑), and 
number of selected stocks for two-step AREN and BoAREN with varying soft index S and 
number of bootstrap replicates m using Algorithm 3. M is the largest percentage of money 
spent on a single stock 

𝐌𝐌 Measure Two-step BoAREN 𝐒𝐒=1 BoAREN 𝐒𝐒=0.95 
AREN 𝐦𝐦=32 𝐦𝐦=64 𝐦𝐦=128 𝐦𝐦=256 𝐦𝐦=32 𝐦𝐦=64 𝐦𝐦=128 𝐦𝐦=256 

1 
TE 1.11 1.25 1.41 1.50 1.40 1.13 1.01* 1.13 1.24 

RMSE 1.14 1.30 1.47 1.57 1.46 1.16 1.04 1.18 1.30 
Stocks 259 182 161 145 155 238 243 234 204 

0.3 
TE 1.02 1.27 1.23 1.43 1.43 1.19 1.01 1.09 1.11 

RMSE 1.11 1.36 1.31 1.52 1.52 1.27 1.08 1.18 1.19 
Stocks 259 184 192 154 155 216 243 234 236 

0.2 
TE 1.13 1.24 1.29 1.40 1.98 1.25 1.13 1.19 1.19 

RMSE 1.24 1.34 1.38 1.47 2.06 1.35 1.23 1.28 1.28 
Stocks 259 204 192 171 80 216 243 234 236 

0.1 
TE 3.66 3.92 4.00 4.29 3.59 3.80 3.53 3.24 3.34 

RMSE 3.82 3.98 4.01 4.30 3.72 3.90 3.66 3.34 3.47 
Stocks 190 67 31 26 33 95 152 121 121 

𝐌𝐌 Measure Two-step BoAREN 𝐒𝐒=0.9 BoAREN 𝐒𝐒=0.85 
AREN 𝐦𝐦=32 𝐦𝐦=64 𝐦𝐦=128 𝐦𝐦=256 𝐦𝐦=32 𝐦𝐦=64 𝐦𝐦=128 𝐦𝐦=256 

1 
TE 1.11 1.15 1.15 1.03 1.05 1.20 1.11 1.23 1.13 

RMSE 1.14 1.20 1.19 1.08 1.10 1.25 1.15 1.28 1.16 
Stocks 259 247 259 258 259 262 254 248 252 

0.3 
TE 1.02 1.09 1.07 1.02 1.01 1.13 1.05 1.12 1.06 

RMSE 1.11 1.17 1.15 1.10 1.09 1.22 1.12 1.20 1.13 
Stocks 259 247 259 258 259 251 254 248 248 

0.2 
TE 1.13 1.24 1.24 1.24 1.24 1.20 1.17 1.22 1.19 

RMSE 1.24 1.35 1.34 1.34 1.34 1.32 1.27 1.33 1.29 
Stocks 259 242 242 242 243 254 254 253 248 

0.1 
TE 3.66 2.97* 3.23 3.11 3.31 3.41 3.34 3.13 3.57 

RMSE 3.82 3.10 3.34 3.21 3.44 3.53 3.47 3.24 3.68 
Stocks 190 133 153 150 147 144 121 118 154 

𝐌𝐌 Measure Two-step BoAREN 𝐒𝐒=0.8 BoAREN 𝐒𝐒=0.75 
AREN 𝐦𝐦=32 𝐦𝐦=64 𝐦𝐦=128 𝐦𝐦=256 𝐦𝐦=32 𝐦𝐦=64 𝐦𝐦=128 𝐦𝐦=256 

1 
TE 1.11 1.35 1.14 1.13 1.12 1.34 1.38 1.39 1.42 

RMSE 1.14 1.41 1.17 1.16 1.15 1.40 1.45 1.46 1.48 
Stocks 259 179 258 261 259 198 187 200 201 

0.3 
TE 1.02 0.95 1.06 1.03 1.06 0.94* 0.95 0.95 0.95 

RMSE 1.11 1.08 1.14 1.11 1.13 1.07 1.07 1.07 1.08 
Stocks 259 295 258 261 259 299 297 295 295 

0.2 
TE 1.13 1.12 1.18 1.14 1.17 1.09 1.07* 1.13 1.11 

RMSE 1.24 1.22 1.29 1.24 1.28 1.19 1.17 1.22 1.20 
Stocks 259 262 258 261 259 245 266 233 233 

0.1 TE 3.66 3.42 3.94 3.33 3.44 3.44 3.53 3.47 3.59 

 RMSE 3.82 3.54 4.06 3.45 3.56 3.57 3.65 3.59 3.70 
Stocks 190 114 116 145 147 166 154 154 156 
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Table 1 shows tracking errors (TE), root mean-squared errors (RMSE), and the number of selected stocks 
over two-step AREN and BoAREN using different bootstrap replicates m, different limits on the amount 
spent on each stock M, different BoAREN soft indexes S, and not limit on the number of stocks that can 
be selected. For all M = 1,0.3,0.2,0.1, two-step AREN performs well, and BoAREN performs even better. 
It appears that a soft index of S = 1 seems too strict, selecting only a few stocks, and as bootstrap 
replications increase, the tracking error does not converge and becomes increasingly large. In the 
case of no limit on the amount spent on a single stock (i.e., M = 1), BoAREN with a soft index of S = 1 
also seems too strict, S = 0.8,0.75 seems too soft, and S in between works better with the lowest tracking 
error 1.01 obtained when m = 64, S = 0.95. By limiting the amount spent on each stock to M = 0.3 and 
M = 0.2, a softer index of S = 0.75 performs better, giving tracking errors of 0.94 and 1.07, respectively. 
In the case of no more than 10% of the total amount spent on each stock, BoAREN with S = 1 shows 
decreasing tracking errors as bootstrap replications increase and outperforms two-step AREN when 
m = 256. Moreover, most cases of BoAREN with S = 0.95,0.9,0.85,0.8,0.75 show improvement over the 
two-step AREN case in terms of tracking errors. 

Table 1: Tracking errors (𝐓𝐓𝐓𝐓 in units of 𝟏𝟏𝟎𝟎−𝟑𝟑), root mean-squared errors (RMSE, in units of 𝟏𝟏𝟎𝟎−𝟑𝟑), and 
number of selected stocks for two-step AREN and best BoAREN model using Algorithm 3. 𝐌𝐌 
is the largest percentage of money spent on a single stock. 𝐦𝐦 is the number of bootstrap 
replicates. 𝐒𝐒 is the soft index. 

Stocks 𝐌𝐌 Two-step AREN Best BoAREN 
𝑻𝑻𝑻𝑻 RMSE Stocks 𝑻𝑻𝑻𝑻 RMSE Stocks 𝐦𝐦 𝐒𝐒 

No limit 

1.0 1.11 1.14 259 1.01 1.04 243 64 0.95 
0.3 1.02 1.11 259 0.94 1.07 299 32 0.75 
0.2 1.13 1.24 259 1.07 1.17 266 64 0.75 
0.1 3.66 3.82 190 2.97 3.10 133 32 0.90 

≤200 

1.0 1.44 1.52 196 1.25 1.30 186 128 0.90 
0.3 1.33 1.42 196 1.20 1.29 192 32 0.95 
0.2 1.33 1.43 196 1.21 1.32 192 32 0.95 
0.1 3.66 3.82 190 2.97 3.10 133 32 0.9 

≤150 

1.0 1.47 1.55 146 1.37 1.43 147 64 1.00 
0.3 1.46 1.57 146 1.36 1.45 147 64 1.00 
0.2 1.49 1.58 149 1.39 1.47 144 32 0.85 
0.1 4.46 4.58 139 2.97 3.10 133 32 0.90 

≤100 

1.0 2.14 2.20 84 1.53 1.60 97 64 0.80 
0.3 2.24 2.32 84 1.61 1.70 97 64 0.80 
0.2 2.43 2.49 88 1.71 1.83 95 32 0.95 
0.1 6.40 6.52 88 3.59 3.72 33 256 1.00 

Note that in the majority of cases in Table 1, a large number of stocks were selected. Due to 
transaction fees and management effort for retail or individual fund managers, it is of interest to 
examine cases with the limit on stocks to be no greater than 50,100,150,200 during the tuning process 
(Lines 2-10) of Algorithm 3. We examine models with S = 1,0.95,0.9,0.85,0.8,0.75, m = 32,64,128,256 and 
summarize the best model for each M and limit on stocks in Table 2. As compared with two-step AREN 
which generally performs well, BoAREN performs better in terms of tracking errors, mean-squared 
errors, and picking about the same number or even fewer stocks. To see the sensitivity of the BoAREN 
parameters, in Figure 1, we plot the predicted S&P 500 index using the best BoAREN models for each 
stocks number constraint and each M (see Table 2) and compare them with the actual S&P 500 index 
values. We use predicted returns for next time step Rpred

next  and the actual price from last time step Preal
last 

to calculate each fitted or predicted S&P 500 index �Rpred
next + 1�Preal

last. To make the difference between 
the actual and predicted values more visible, in Figure 2, we plot the ratio of actual to predicted S&P 
500 index using the best BoAREN models in Table 2. From Figure 1 and Figure 2 we see that BoAREN 
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tends to show better performance as the limits on stocks and M get larger. However, this difference is 
not significant among the cases M = 1,  0.3,  0.2 and among the various conditions imposed on stock 
count, i.e. no limit, ≤ 200, ≤ 150. Since there is a trade-off between the model accuracy and the 
expense in applying the model, these results imply that portfolio managers may consider using a 
relatively small number of stocks and a suitable constraint on the amount spent on each stock to track 
the S&P 500 index while retaining high tracking accuracy. 

 
Figure 1:  Predicted S&P 500 index (from 2021-2-24 to 2021-9-1) using the best BoAREN models in Table 

2. Green dot lines correspond to actual values of S&P 500 index; red solid lines correspond 
to predicted values by BoAREN; blue dash lines correspond to predicted values by two-step 
AREN. 
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Figure 2:  Actual over predicted S&P 500 index (from 2021-2-24 to 2021-9-1) using the best BoAREN 

models in Table 2. Red solid lines correspond to actual over predicted values by BoAREN; 
blue dash lines correspond to actual over predicted values by two-step AREN. 

 

4. Summary and Conclusions 

The objective of this study has been to illuminate a growing body of research that aims at improving 
the generality and prediction capability of linear statistical models applied to large quantities of data. 
The prototypical example we have chosen here is that of index tracking in financial modeling, but the 
potential applications to large-scale data analysis in finance extend well beyond this. To accomplish 
this, we have chosen to present an exposition of the Arbitrary Rectangle-range Elastic Net (AREN), 
one of many algorithmic approaches to regularization of linear statistical models having a large 
number of unknown parameters. The challenge for these models is to find the most influential 
predictors and to estimate their coefficients in a way that minimizes the model prediction error. The 
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AREN is a special case of the more general ARGEN model studied in Ding et al. (2021) and is ideal in 
this context because it is broadly applicable, and its important properties (tractability, estimation 
consistency, and variable selection consistency) follow from the more general ARGEN, allowing these 
results to be described without lengthy proofs. Progress in this field of research has been accelerating 
along with the influence of data science and the availability of extensive and inexpensive computing 
resources. Accordingly, following the work of Bach (2008) our main contribution here has been to 
demonstrate that the prediction capability of the AREN method can be further improved through the 
use of bootstrapping. This has been shown here to be the case for the index-tracking problem applied 
to the S&P 500. The literature in mathematical finance has been for some time mostly dominated by 
stochastic calculus and derivations of derivative-pricing formulae. Less well represented are methods 
for carefully analyzing financial data to design portfolios or reliably estimate the many unknown 
parameters that the aforementioned pricing formulae require. It is our hope that this work has 
reinforced the importance of methods essential to the empirical side of finance.  
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