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On the existence of an optimal estimation 
window for risk measures 

We investigate whether there can exist an optimal estimation window for financial risk 
measures. Accordingly, we propose a procedure that achieves optimal estimation window 
by minimizing estimation bias. Using results from a Monte Carlo simulation for Value at Risk 
and Expected Shortfall in distinct scenarios, we conclude that the optimal length for the 
estimation window is not random but has very clear patterns. Our findings can contribute 
to the literature, as studies have typically neglected the estimation window choice or relied 
on arbitrary choices.
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1. Introduction
Estimating risk measures is now a standard approach in 

the finance. A risk manager should consider the available 

information in order to forecast for the next period. 

Although many studies focus on both the introduction and 

comparison of estimation techniques, the role of information 

is still rather neglected. If little information is considered for 

forecasting the next period, there is a possibility that market 

fundamentals will be ignored with too much reliance on 

short term adjustments, which tend to be volatile. However, 

if too much past information is used, current facts that 

could improve forecasting are given low importance. Thus, 

correctly balancing such a trade-off is crucial for correct 

risk measurement. 

Accordingly, the following question naturally arises: 

is there an optimal amount of past information to use in 

forecasting risk measures? It is difficult to know, as there 

are many variables in the entire process. Nevertheless, 

evidence can be obtained. In that sense, the objective of 

this note is to show that the optimal amount is not random, 

thus opening the way for studies seeking to compare and 

obtain the number of past data in the same vein that 

occurs for distinct quantile levels or forecasting horizons. 

To that end, we present a procedure based on minimizing 

estimation bias. Results from Monte Carlo simulations sustain 

our conclusions.
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2. Proposed procedure and simulation details
In this study, we focus on the risk measures most 

often used by both academic researchers and industry 

practitioners: Value at Risk (VaR) and Expected Shortfall 

(ES). Let X be the random payoff of a financial position 

with distribution function F. At the significance level α 
Є(0,1), VaR represents the loss on X that is only overcome 

with probability α, in other words, the quantile of F, i.e., 

VaRα=−inf {q:F(q)≥α}= −qα(X)¹. Despite its simplicity and 

wide use, VaR does not consider potential losses beyond 

the quantile level and lacks theoretical properties². ES does 

not suffer from such drawbacks³, as it is the expected value 

of a loss once it overcomes the VaR, i.e., ESα=-E[X|X<−
VaRα ].  

These risk measures are typically estimated using the last 

N observations. Thus, let  and , respectively, be 

estimated VaR and ES at the significance level α based 

on the last N observations. A risk manager has the set of 

possible choices for N in the form of N={N1 ,N2 ,…,Nk 
}, with N1<N2<…<Nk. More specifically, the choice is 

for a Ni , i=1,2,…,k between two extreme options, such 

as Nmin≤Ni≤Nmax. Most researchers and risk managers 

consider – for example, for daily estimation – estimation 

windows from one to eight years, i.e., 250 ≤ Ni ≤ 2000. 

With that in mind, we propose to consider that the optimal 

choice for the estimation window is the one that minimizes 

the bias from the true risk measure value. In this note, 

formulations ❶ and ❷ mathematically define it for VaR 

and ES, respectively. 

❶

❷

This minimization procedure is based on absolute 

deviation, but other functional forms, such as least squares, 

can be used. Nevertheless, readers can note that for this 

specific case, both approaches would tend to give the 

same solution. Moreover, absolute deviation is linked more 

to distance, which is the definition of bias, beyond the fact 

that it does not leverage discrepancies. We consider the 

infimum for the case of ties because of parsimony, as one 

can use less data to obtain the same results.

As true VaRα and ESα are not observable, it is impossible 

to solve the problem for empirical data, but it is possible to 

consider simulated data where one knows the true value 

for risk measures. If one solves ❶ or ❷ for j samples with 

the same data generation process and no clear optimum 

exists, then NJ={N1
optimal ,…,N j

optimal }~U(Nmin,Nmax). In other 

words, the optimal estimation windows would assume any 

value between the minimum and maximum candidates 

with uniform (or, at least, very similar) probability. 

To verify whether there is any pattern distinct from the 

uniformity for optimal values for N, we perform a Monte 

Carlo simulation study. To that end, we consider that returns 

X, drawn from AR (1) – GARCH (1,1) models4, conform ❸.

❸

where,  and  are for period T, 

respectively, return, conditional variance, innovation on 

the expectation and a v degrees of freedom student 

white noise with E[zT]=0 and E[(zT)2]=1. σ 2 is the 

unconditional variance. We consider four scenarios to 

contemplate the presence (v=6) or not (v=∞, i.e., Normal 

distribution) of extreme returns, as well as periods of low 

(σ=0.0125) and high (σ=0.022) volatility. The parameters 

have been chosen to match those obtained for daily 

returns of the S&P 500 index before and during the sub-

prime crisis5. Under this specification the true values for 

the risk measures are 

and . We choose 

Nmin=250 and Nmax=2000, around one and eight years, as 

this is the range of values that is typically is used in studies 

about risk estimation. 

We simulate 10,000 samples with length 2001 (Nmax plus 

1 observation for the forecasting) for each scenario, and 

compute VaR and ES considering the Historical Simulation 

(HS) method. This non-parametric empirical method 

does not have assumptions about data and is the most 

commonly used in both academic studies and the financial 

industry6. Let E be the empirical distribution of returns 

, then HS estimators are  and 

, 

where 1p  is the indicator function that assumes value 1 if 

p is true and 0 otherwise. We compute, for each sample 

and Noptimal 
(solving ❶ with  and ❷ with  as true values, 

respectively for VaR and ES. We consider 1% and 5% as 

values for α.
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3. Simulation results
The results from our Monte Carlo simulation are presented 

in Table 1 and Figs. 1 to 4. The results from Table 1 indicate 

that the HS estimator produces relevant bias and variability, 

overestimating risk, especially in periods that are more 

turbulent. The exception is for Normal innovations with low 

volatility, which underestimates risk. Such deficiencies are 

in accordance with the points raised by Pritsker (2006). 

Nevertheless, considering the optimal estimation window 

reduces both bias and variability.

Table 1. Bias, Root Mean Squared Error and optimal N obtained in the Monte Carlo Simulations

More specifically on the optimal estimation window, 

the results in Figs. 1 to 4 indicate that a common pattern 

is identified in most scenarios and significance levels. 

The optimal estimation window has more probability of 

occurring between 250 and 500 days (around 1 and 2 

years), with some significant probability, except for the 

Normal distribution with low volatility around the maximum 

possible of 2,000 days (8 years)7. In some cases, as for 

scenarios of high volatility, there is also relevant probability 

for estimation windows between 750 and 1,000 days 

(3 and 4 years). In such cases, discrepancy is small most 

likely because estimation consistency is partially lost on 

turbulent periods. In all situations, the empirical distribution 

of the optimal lengths differs significantly from a Uniform 

distribution8. It is worth mentioning that the results are 

relatively homogenous for both VaR and ES at 1% and 5% 

significance levels. 

Such results are in partial discordance with studies that 

argue in favor of larger estimation windows to improve 

risk forecasting, as Kuester et al. (2006) and Alexander 

and Sheedy (2008) for VaR, as well as Wong et al. (2012) 

and Righi and Ceretta (2015) for ES. This outcome can 

be linked to the fact that these types of studies typically 

rely on an arbitrary amount of past data, and even when 

more candidates for the estimation window are used, the 

comparison is very limited to specific lengths (and not to an 

entire interval of possible lengths as we do in our simulation 
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exercise) and there is no consensus. Of course, we are not 

saying here that this is the optimal solution for everyone 

who uses empirical risk estimation, but it is very strong 

evidence that an optimal estimation window can exist. 

This phenomenon is not well investigated in the current 

literature.

Figure 1. Histograms and densities of VaR and ES 
optimal N obtained through Monte Carlo simulation 
under Normal GARCH with low volatility

Figure 2. Histograms and densities of VaR and ES 
optimal N obtained through Monte Carlo simulation 
under Normal GARCH with high volatility

 

 

 

 

 

Figure 3. Histograms and densities of VaR and ES 
optimal N obtained through Monte Carlo simulation 
under Student’s t GARCH with low volatility

Figure 4. Histograms and densities of VaR and ES 
optimal N obtained through Monte Carlo simulation 
under Student’s t GARCH with high volatility
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Note

1. See Duffie and Pan (1997)  for a review on VaR.

2. VaR is not coherent in the sense of Artzner et al. (1999) 
as it does not have the subadditivity property that 
guaranteed risk diversification.

3. ES is coherent, as explained in Acerbi and Tasche 
(2002).

4. This data generation process is often considered for 
finance because it contemplates stylized facts of daily 
financial returns, such as volatility clusters and heavy 
tails.

5. This is a choice of the authors because this index is one 
of the most representative and is usually considered in 
simulation studies (see Christoffersen and Gonçalves 
(2005) for instance).

6. Pérignon and Smith (2010) indicate that 76% 
of financial institutions that disclose their VaR 
methodology use HS for estimation.

7. Perhaps if a larger value for N_max is considered, such 
probability around 2,000 could be dispersed.

8. We conduct usual chi-squared tests for the null 
hypothesis of Uniform distribution.

4. Conclusion
In this note, we conduct a Monte Carlo simulation 

to show that the optimal amount of past information in 

risk measures forecasting is not random and can directly 

affect the quality of forecasting. To that end, we propose a 

procedure that chooses the optimal estimation window by 

minimizing estimation bias. Our results, which are obtained 

for VaR and ES under distinct scenarios and quantiles, 

indicate that the optimal estimation windows are not 

uniformly distributed, and that most probability is for the 

interval between 1 and 2 years (for daily forecasting). Our 

focus here is not to say what the optimum is, because we 

only consider one estimation model (HS) and a limited 

number of possibilities, but indicate that such an optimum 

can exist. The literature must start to pursue it rather than 

place trust in very arbitrary choices.
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