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Abstract 
 
Previous research has found that high-frequency traders will vary the bid or offer price 
rapidly over periods of milliseconds. This is a benefit to fast traders who can time their 
trades with microsecond precision, however it is a cost to the average market 
participant due to increased trade execution price uncertainty. In this analysis we 
attempt to construct real-time methods for determining whether the liquidity of a 
security is being altered rapidly. We find a four-state Markov switching model identifies 
a state where liquidity is being rapidly varied about a mean value. This state can be 
used to generate a signal to delay market participant orders until the price volatility 
subsides. Over our sample, the signal would delay orders, in aggregate, over 0 to 10% of 
the trading day. Each individual delay would only last tens of milliseconds, and so would 
not be noticeable by the average market participant. 
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1. Introduction 

The goal of this analysis is to construct methods to determine, in real-time, when the volatility 
of the liquidity provided is being rapidly changed around a mean value, which is consistent 
with the effect of an algorithm or set of algorithms. Such methods would allow the creation 
of orders which can be cancelled, or delayed, if the market switches to such a regime with 
unstable liquidity. This is analogous to the crumbling quote signal from the Investors Exchange 
(outlined in Bishop (2017)). 

Such real-time detection is a difficult task, though identification does not have to be perfect. 
The threshold is that investors choose to use the order—that it is correlated enough with 
undesirable activity that it adds value to the investor to submit the order type. For the order 
type to have worth to investors algorithmic activity, or other processes which rapidly change 
liquidity around a mean value, which is a cost to the average investor must exist. 

Hasbrouck (2018) found evidence for substantial volatility in the bid and offer prices which 
was not due to fundamental changes in the asset value. The cost of this volatility is not borne 
equally by traders. Faster traders are able to choose the point (in microseconds) at which 
they trade. Slower traders, however, will receive a trade price some time later (maybe 
seconds) after they attempt to submit a marketable order. This trade price is a random 
variable, and they are exposed to price risk which is a function of the expected variation of 
the bid (or offer) price over the time from when they submitted the order to when it is 
matched by the exchange. 
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So, when fast traders change the bid/ask price quickly, slower traders still expect to 
receive/pay the same amount for each sell/buy order, however they have increased 
uncertainty. This increased risk without increased compensation should be avoided by any 
rational investor. The goal of our analysis is to help investors find ways to delay their order until 
the execution price of their order has more certainty. Since the volatility can occur in 
milliseconds, the method of identification must itself be algorithmic. 

Note, investors should attempt to avoid these periods of increased uncertainty even if the 
source of the uncertainty is not high-frequency traders. We therefore don’t attempt to 
determine the source of uncertainty, but rather, in real time, identify when such variations in 
liquidity are occurring. 

Both spread and depth pose substantial risk, particularly for institutional investors who tend to 
trade in quantities far larger than what is available at the inside quotes. Despite this many 
seminal models of market making under asymmetric information ignore market depth by 
assuming a unit size for all trades (Copeland and Galai (1983); Glosten and Milgrom (1985); 
Easley (1992)). Alternatively, in Kyle (1985) market depth is implicitly incorporated in the 
model through requiring specialists to supply complete pricing functions. In our analysis we 
will consider the time-series of liquidity available in the orderbook within a set distance from 
the bid-ask midpoint. 

Our algorithm will attempt to filter out the other various drivers of price and market depth 
changes. For example, French and Roll (1986) found evidence that stock price volatility is 
driven by private information being incorporated into market prices via trading. Lee, 
Mucklow, and Ready (1993) studied the relationship between spreads and depth around 
earnings announcements. So, we are attempting to find a state where price and market 
depth are changing in a manner inconsistent with trading on private information or around 
events. Notably, this first source of price and depth change would impart a directional bias 
to prices, and in the case of Lee, Mucklow, and Ready (1993) the spread widened. 
Alternatively, the high-frequency trading we are attempting to identify does not change 
mean price or market depth as in these former cases. 

 
2. Data 

We use data for the heavily traded E-Mini S&P 500 Futures contract. Price discovery in the 
equity market occurs in this contract (Hasbrouck (2003)). Trading hours from Sunday–Friday 
from 6:00 p.m. to 5:00 p.m. Eastern Time (ET). Contract value is $50 times the futures price. 
Cash delivery with expirations every 3 months. Traded on the Chicago Mercantile Exchange 
(CME) (pit and electronic (Globex)). 
 
The reason we use CME Data ES is because, in addition to being the first place that 
information is incorporated into prices and trading overnight, all trades and quotes take 
place in this one central book. So, there is no delay in orders due to location. 
 

Data are Market Depth Data1 for E-Mini S&P 500 futures (Globex), for the trading week from 
November 7 to November 11, 2016. The data were purchased directly from the CME. We 
focus our results on November 9 2016 because it was the trading day where results of the US 
Presidential election were released, and therefore there were high levels of trade and quote 
volume, which makes the presence of algorithmic activity more likely. 
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Market Depth Data contains all market messages (trade/limit order updates) to and from 
the CME, and is time-stamped to the nanosecond. The data also includes tags for aggressor 
side. Using this data, we can recreate the ES orderbook with nanosecond resolution and up 
to 10 levels deep. The data are encoded in the CME’s FIX/FAST message specification2. We 
have made the translation scripts used in this analysis freely available3. 

In the following charts and analysis, it is helpful to note the difference between clock and 
market time. When considering the nanosecond (one-billionth of a second) level, the market 
has long periods of inactivity interspersed with periods of activity. Our data set only contains 
these periods of activity (and of course the length of time since the previous period of 
activity). Otherwise we would require a time series of 1 billion data points to analyse each 
second. 

 

3. Methods 

Our challenge is that of unsupervised learning - we are attempting to identify a state without 
training data providing the states for a sample of data. A classic problem of this type in the 
economics literature is to determine if the economy is in an expansion or recession. In this 
expansion/recession analysis Markov regime-switching regressions are used (see for 
example the method employed by the US Federal Reserve). We’ll use a similar approach in 
our analysis to determine periods of stable, and unstable, liquidity driven by algorithmic 
activity. Our exact model is outlined below. 

We measure liquidity on each side of the book as the amount of ES that can be bought 
within one point of the present bid-offer midpoint. One point is equivalent to 4 ticks (so 
maximum the inside quote and 3 additional levels of the book). Results below are for the 
November 9, 2016 trading day, which is the most likely to exhibit algorithmic trading activity 
due to the large public release of information, and the consequent portfolio rebalancing 
and increased trade volume.  

3.1 Markov-Switching Model 

There is no test for the proper number of states in a multiple state model. We thus estimate 
an increasing number of states and let the interpretation of the results and standard tests of 
the residuals, in each state, to guide us to finding a state consistent with algorithmic activity. 

The two-state version of our model is: 

𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡 =  �𝛼𝛼1 +  𝛽𝛽11𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 𝛽𝛽12Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0,𝜎𝜎1) 
𝛼𝛼2 + 𝛽𝛽21𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 𝛽𝛽22Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖2,     𝜖𝜖2~ 𝑁𝑁(0,𝜎𝜎2)                                              (1) 

 

𝑃𝑃(𝑠𝑠𝑡𝑡 = 𝑗𝑗 |𝑠𝑠𝑡𝑡−1 = 𝐿𝐿) = 𝑝𝑝𝑖𝑖𝑖𝑖   𝑓𝑓𝑓𝑓𝑓𝑓  𝐿𝐿, 𝑗𝑗 ∈ {1,2}  𝑎𝑎𝑎𝑎𝑎𝑎  ∑ 𝑝𝑝𝑖𝑖𝑖𝑖2
𝑖𝑖=1 = 1                                               (2) 

 

where Liqt-1 is the liquidity in the previous period and ∆BAM is the most recent change in the 
bid-ask midpoint. There are two states, denoted by s1 and s2, and pij denotes the probability 
that the state is j given the state was i in the previous period. We estimate the model via the 
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Hamilton Filter with a custom implementation in C++ due to the large number of points in 
our time series. 

Similar to the bid and ask volatility estimate in Hasbrouck (2018), we estimate the model for 
the bid and ask sides of the book separately. This is because the rapid deviations from a 
mean liquidity value, which we are attempting to identify, largely affect one side of the 
book, and so are more likely to be an artifact of the trading process rather than due to 
fundamental information. Nonetheless, modelling the entire book (bid and ask sides jointly) 
would include more information in the parameter estimates, such as spillover effects. 
However, this would increase the time required to estimate parameters as well as the time 
it takes to create a state prediction. Since the algorithm must be very quick to be useful, we 
err on the side of speed relative to the benefit of the information in both sides of the spread. 

3.1.1 Two States 

The two-state model is picking up states of changing liquidity and stable liquidity. In both the 
bid and offer models, the first state had a coefficient of 1 on the previous liquidity, and a 
small residual standard deviation. This state is consistent with no public or private information 
being incorporated into prices, and little in the market changing. 

The second state, which has a higher residual variance, exhibits evidence of changing 
liquidity. However, the coefficient on previous liquidity, and the intercept are significantly 
different between the two models. Accordingly, state 2 may be driven by liquidity changing 
for various reasons. These results motivate a 3-state model where we differentiate the state 
with changing liquidity into two states—one representing changing liquidity due to HFT 
activity: 

• Stable liquidity 
• Normal changing liquidity 
• Changing liquidity due to HFT 
 
Bid: 

𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡 =  �0.00 +  1.00𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 0.09Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.002) 
−0.83 + 0.49𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 0.06Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖2,     𝜖𝜖2~ 𝑁𝑁(0, 0.470)                            (3) 

Offer: 

𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡 =  �0.42 +  1.33𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 0.12Δ𝐵𝐵𝐵𝐵𝐵𝐵 +  𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.420) 
0.00 + 1.00𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 0.16Δ𝐵𝐵𝐵𝐵𝐵𝐵 +  𝜖𝜖2,     𝜖𝜖2~ 𝑁𝑁(0, 0.001)                           (4) 

 
3.1.2 Three States 

The first state in the 3-state model again exhibits stable liquidity. The following two states 
exhibit varying volatility which is driven by different factors. In state 2 liquidity is driven by a 
change in the bid-ask midpoint. This is consistent with liquidity provision in reaction to a 
movement in the market - possibly driven by new information. 

In state 3, however, a change in the bid-ask midpoint has no effect on liquidity.  Similarly, 
previous liquidity explains only a quarter to a third of present liquidity, and the variance of 
the residual is the highest in state 3. If there is HFT activity present, it is most likely within state 
3. Note, these results are consistent across both bids and asks. Lastly, we’ll estimate the 
parameters of a 4-state model to see if state 3 is a composite of other states. 
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Bid: 

𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡 =  �
−0.00 +  1.00𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 0.12Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.004)
−0.09 + 0.22𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 1.02Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.292)
−0.01 + 0.32𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 0.004Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.400)

                              (5) 

 
 
Figure 1: Two state Markov-Switching model of liquidity available at the bid  
2 State Model (Bid) 2016−11−09 14:56:56 / 2016−11−09 14:57:04 
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Figure 2: Two state Markov-Switching model of liquidity available at the offer  
2 State Model (Offer) 2016−11−09 14:56:56 / 2016−11−09 14:57:04 
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Figure 3: Three state Markov-Switching model of liquidity available at the bid 

 

 
Offer: 

𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡 =  �
−0.00 +  1.00𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 0.10Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.004)

0.38 − 0.03𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 0.81Δ𝐵𝐵𝐵𝐵𝐵𝐵 +  𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.078)
0.12 + 0.25𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 0.01Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.900)

                             (6) 
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Figure 4: Three state Markov-Switching model of liquidity available at the offer 

 

3.1.3 Four States 

Similar to the three-state equation, the first two states represent stable liquidity, and 
changing liquidity driven by changes in the bid-ask midpoint. State 3 exhibits negative 
relationships between previous and present liquidity. The standard deviation of the error 
term is moderately high in this state, however it is about a quarter to a third of the standard 
deviation of the error term in state 4. 

State 4 is most consistent with the type of HFT activity we are trying to identify. In state 4 
liquidity remains constant with substantial variability around the stable mean liquidity 
amount. 
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Bid: 

𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡 =   

⎩
⎨

⎧
0.0024 +  0.9983𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 0.1319Δ𝐵𝐵𝐵𝐵𝐵𝐵 +  𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.0077)
−0.0594 − 0.3211𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 0.8524Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.2901)
0.3796 − 0.0636𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 0.1802Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.2409)
−0.1626 + 0.9469𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 + 0.0791Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.6580)

                         (7) 

Offer: 

𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡 =   

⎩
⎨

⎧
0.0000 + 1.0000𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 0.2681Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.0000)
−0.0055 + 0.9949𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 1.1200Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.0153)
−1.1325 − 03480𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 0.0122Δ𝐵𝐵𝐵𝐵𝐵𝐵 +  𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.1400)
−0.0048 + 1.0051𝐿𝐿𝐿𝐿𝑞𝑞𝑡𝑡−1 − 0.5034Δ𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜖𝜖1,     𝜖𝜖1~ 𝑁𝑁(0, 0.6207)

                       (8) 

 

Given the above estimates, and using 0.2 as our signal threshold for state 4, the signal fires, 
on average, 0.636 times per second on the bid side of the orderbook. On the ask side of the 
orderbook the signal fires 10.59 times per second on average. Assuming a 10 millisecond 
delay each time the signal fires, this implies the signal duration of 0.636% and 10.59% of the 
trading day on the bid and ask side of the orderbook respectively. This duration range is 
reasonable given anecdotal accounts of the pervasiveness of high-frequency trading in 
markets, such as Hendershott, Jones, and Menkveld (2011) which reported that as much as 
73% of volume in US markets was due to high-frequency trading. 

In tables 3 and 4 in the appendix we provide parameter estimates for the 4-state model, 
along with signal duration estimates, for the entire week (November 7 through 11, 2016). The 
parameter estimates are very similar across days for each side of the orderbook. Further the 
signal durations are also similar with the exception of the offer side of the book on the 
November 9th trading day. The large release of public information occurred on November 
9th, and this orderbook asymmetry with regards to algorithmic activity is consistent with 
Hasbrouck (2018). 

Table 1:  Bid side of the orderbook. 
Below are coefficient estimates from the Markov-switching regressions. The standard errors are next to the 
coefficient in parentheses. The coefficients were estimated using the nanosecond time-stamped orderbook 
ranging from 6:00 PM EST on November 8, 2016 to 5:00 PM EST on November 9, 2016. There are 9,965,673 changes 
to the orderbook for this period. 

Coefficient Two-State Three-State Four-State 
α1 0.00(0.0000) -0.00(0.0000) 0.00(0.0000) 
α2 -0.83(0.0007) -0.09(0.0250) -0.05(0.0033) 
α3  -0.01(0.0140) 0.37(0.0025) 
α4   -0.16(0.0018) 
β11 1.00(0.0000) 1.00(0.0000) 0.99(0.0000) 
β12 0.09(0.1369) -0.12(0.259) 0.13(0.4226) 
β21 0.49(0.0004) 0.22(0.003) -0.32(0.0110) 
β22 -0.06(0.0075) 1.02(0.670) 0.85(1.1350) 
β31  0.32(0.000) -0.06(0.0050) 
β32  0.00(0.0000) -0.18(0.8833) 
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Coefficient Two-State Three-State Four-State 
β41   0.94(0.0001) 
β42   0.07(0.0933) 
σ1 0.00(0.0490) 0.00(0.0661) 0.00(0.0000) 
σ2 0.47(0.0002) 0.29(0.0024) 0.29(0.0044) 
σ3  0.40(0.0001) 0.24(0.0033) 
σ4   0.65(0.0008) 

 

Table 2:  Ask side of the orderbook. 
Below are coefficient estimates from the Markov-switching regressions. The standard errors are next to the 
coefficient in parentheses. The coefficients were estimated using the nanosecond time-stamped orderbook 
ranging from 6:00 PM EST on November 8, 2016 to 5:00 PM EST on November 9, 2016. There are 9,965,673 changes 
to the orderbook for this period. 

Coefficient Two-State Three-State Four-State 
α1 0.42(0.0000) -0.00(0.0000) 0.00(0.0000) 
α2 0.00(0.0041) 0.38(0.0141) -0.00(0.0970) 
α3  0.12(0.0196) -1.13(0.7924) 
α4   -0.00(0.02269) 
β11 1.33(0.4078) 1.00(0.0000) 1.00(0.0083) 
β12 -0.12(0.0059) -0.10(0.2259) -0.26(0.1421) 
β21 1.00(0.0000) -0.03(0.0192) 0.99(0.0001) 
β22 0.16(0.0009) 0.81(1.5312) 1.12(0.0018) 
β31  0.25(0.0027) -0.34(0.0990) 
β32  0.01(1.3956) -0.01(0.6147) 
β41   1.00(0.2876) 
β42   -0.50(0.9778) 
σ1 0.42(0.0011) 0.00(0.0000) 0.00(0.0000) 
σ2 0.00(0.0327) 0.07(0.0101) 0.01(0.0626) 
σ3  0.90(0.0002) 0.14(0.0115) 
σ4   0.62(0.0004) 

 
 

4. Conclusion 
 
In this analysis we have used Markov-Switching regression models to identify the presence 
of high-frequency traders who are rapidly changing volatility. Using a model with four 
states, we identify a state with a stable mean liquidity, but substantial variability in liquidity 
around the mean. That is there is rapidly changing liquidity, which does not affect overall 
liquidity or the price. 
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Figure 5: Four state Markov-Switching model of liquidity available at the bid 
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Figure 6: Four state Markov-Switching model of liquidity available at the offer 

 

Since trading in this state benefits high-frequency traders at the expense of slower retail 
order flow, a transition to this state can serve as a signal to delay slower traders’ orders. The 
delay being mere tens of milliseconds, it will not be perceptible to the typical trader. And 
while this may save each trade a small amount, in aggregate such a delayed order type 
would provide substatial savings across all non-high-frequency traders. Delaying orders 
due to the signal can be offered to retail traders through a particular order type. A similar 
strategy is used by the IEX’s ‘crumbling quote’ order. 
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Appendix 

In tables 3 and 4 below are parameter estimates from the following 4-state Markov-
Switching model. 

Table 3:  Parameter estimates from a 4-state Markov-switching model 
Parameter estimates from a 4-state Markov-switching model on the liquidity available on the bid side of the 
orderbook. There are 2,917,466 entries to the book over the Nov. 7 trading day. There are 3,502,097 book entries on 
Nov. 8. There are 9,965,673 book entries on Nov. 9, which is the trading day over which the results of the election 
were announced. There were 7,346,604 book entries on Nov. 10, and 4,905,882 on 11 November. The duration of 
the signal (Sig. Dur.) was calculated assuming a 10-millisecond delay for each signal, and a 0.2 threshold for the 
signal generation. 

Coefficient 7 Nov. 8 Nov. 9 Nov. 10 Nov. 11 Nov. 
α1 0.0065 0.0431 0.0024 -0.0656 -0.0010 
α2 -0.1132 -0.1694 -0.0594 -0.4849 -0.4917 
α3 0.1121 0.3509 0.3796 0.3917 0.2975 
α4 -0.2210 -0.1783 -0.1626 -0.2966 -0.3563 
β11 1.0004 0.8102 0.9983 0.9500 1.0057 
β12 -0.1579 0.0754 0.1319 0.0174 0.2716 
β21 0.1741 0.0168 -0.3211 0.2004 0.2565 
β22 0.9270 0.8738 0.8524 0.8375 0.4647 
β31 0.0628 0.1031 -0.0636 0.0132 0.0101 
β32 -0.1324 -0.1707 -0.1802 -0.1676 -0.3864 
β41 0.6621 0.6239 0.9469 0.4445 1.1467 
β42 0.1151 0.0910 0.0791 -0.0752 -0.2919 
σ1 0.0221 0.0912 0.0077 0.0109 0.0219 
σ2 0.0920 0.1716 0.2901 0.4268 0.6963 
σ3 0.1701 0.0787 0.2409 0.0769 0.1083 
σ4 0.0065 0.0431 0.0024 -0.0656 -0.0010 
Log Lik. 4880164 117503.2 16693395 20395.45 249944.1 
Sig. Dur. 0.736% 0.020% 0.636% 0.000% 0.000%  

 
Table 4:  Parameter estimates from a 4-state Markov-switching model 
Parameter estimates from a 4-state Markov-switching model on the liquidity available on the offer side of the 
orderbook. There are 2,917,466 entries to the book over the Nov. 7 trading day. There are 3,502,097 book entries on 
Nov. 8. There are 9,965,673 book entries on Nov. 9, which is the trading day over which the results of the election 
were announced. There were 7,346,604 book entries on Nov. 10, and 4,905,882 on Nov. 11. The duration of the 
signal (Sig. Dur.) was calculated assuming a 10-millisecond delay for each signal, and a 0.2 threshold for the signal 
generation. 

Coefficient 7 Nov. 8 Nov. 9 Nov. 10 Nov. 11 Nov. 
α1 0.0000 0.0000 0.0000 0.0000 0.0000 
α2 -0.0007 0.0008 -0.0055 0.0011 -0.0051 
α3 -1.1325 -1.1374 -1.1325 -0.1314 -1.1329 
α4 -0.0042 0.0052 -0.0048 -0.0060 0.0015 
β11 1.0054 1.0051 1.0049 1.0059 0.9979 
β12 -0.2681 -0.2707 -0.2681 -0.2643 -0.0033 
β21 0.9960 0.9977 0.9949 0.9991 0.9955 
β22 -1.1161 -1.1034 -1.1200 -1.1195 -1.291 
β31 0.3465 0.3481 0.3480 0.3487 0.3414 
β32 -0.0121 -0.0153 -0.0122 -0.0082 -0.0064 
β41 1.2411 1.2369 1.0086 1.2357 1.0148 
β42 -0.5031 -0.5057 -0.5034 -0.5006 -0.5136 
σ1 0.0000 0.0000 0.0000 0.0000 0.0000 
σ2 0.0016 0.0018 0.0153 0.0030 0.0039 
σ3 0.1400 0.1400 0.1400 0.1400 0.1400 
σ4 0.6217 0.6369 0.6207 0.6316 0.6165  
Log Lik. 841089.4 5872364 45918365 5637773 839429.5 
Sig. Dur. 0.403% 0.797% 10.59% 0.704% 1.206%  
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